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ABSTRACT
For decades, database research has focused on optimizing perfor-
mance under fixed resources. As more and more database applica-
tions move to the public cloud, we argue that it is time to make cost
a first-class citizen when solving database optimization problems.
In this paper, we introduce the concept of cost intelligence and
envision the architecture of a cloud data warehouse designed for
that. We investigate two critical challenges to achieving cost in-
telligence in an analytical system: automatic resource deployment
and cost-oriented auto-tuning. We describe our system architecture
with an emphasis on the components that are missing in today’s
cloud data warehouses. Each of these new components represents
unique research opportunities in this much-needed research area.

1 INTRODUCTION
From an economic perspective, databases are simply a type of goods
or services. A consumer pays a price of 𝐶 for the database product
and earns utility (which eventually translates to revenue) by re-
ceiving timely query results. The utility function𝑈 (𝑝) is positively
correlated with the query performance 𝑝 . A “better” (i.e., more
competitive in the market) database, therefore, is the one that max-
imizes consumer profit (i.e., Π = 𝑈 (𝑝) −𝐶). This fundamental logic
has always remained the same throughout database development.

For decades, database research has focused on optimizing the
performance 𝑝 under a fixed amount of resources, leaving the cost𝐶
behind. This is rational because traditional distributed databases [4,
21, 25] typically dedicate a predetermined number of machines to
run the service. The dominating factor in 𝐶 is the sunk cost 𝐶𝑠𝑢𝑛𝑘
for purchasing computing equipment, software licenses, and other
supporting facilities. The marginal cost Δ𝐶 attributed to database
operations (e.g., power consumption) is relatively small. There is
little one can do to increase the user profit by reducing the cost.

The situation has changed dramatically in the past decade as
more and more database applications move to the public cloud.
The “pay-as-you-go” pricing model eliminates the majority of the
sunk cost and enables fine control over the operational cost Δ𝐶 .
Technologies such as the disaggregation of compute and storage
allow recent cloud-native databases [1, 7, 10] to further leverage
the resource elasticity at a fine granularity. Meanwhile, cost re-
duction is the driving force behind most customers’ migration to
cloud-native database services. Performance is no longer the only
criterion. A typical database user today treats performance as a
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requirement rather than an optimization target [14, 31] because
the performance beyond often contributes little to the application’s
revenue (i.e., 𝑈 (𝑝) is a step function). Their goal is to minimize
the cost while guaranteeing a performance service-level agreement
(SLA). Another user paradigm is to set a fixed budget to spend on
the database service and try to get the best performance out of it.

We argue that it is time to make cost a first-class citizen when
solving database optimization problems. The demand for cost sav-
ings has always been there, and the resource elasticity provided
by the public cloud services makes it possible to manipulate cost
as a free variable rather than a near-constant. Cost efficiency is
equally important as performance because they both serve to maxi-
mize user profit. Given this, optimization in a cloud-native database
should be bi-objective by default: any performance gain must be
justified by the potential trade-off in cost (and vice versa) to be
considered valuable in an application.

It is important to distinguish between user-observable cost (UOC)
and provider-observable cost (POC, often referred to as the cost of
goods sold financially). From a user’s perspective, their cost is the
cloud bill which reflects the amount of resources reserved/promised
by the database service for completing a task. A simple aggrega-
tion of the UOCs, however, does not equal the cost borne by the
service provider (i.e., POC). To support multi-tenancy, a provider
typically manages virtualized resource pools where smart schedul-
ing algorithms (sometimes overcommitting) could lead to a much
higher resource utilization overall compared to that of individual
users [30]. To this end, UOC is the base cost that determines how
cost-competitive a database product is, while optimizing POC fur-
ther improves the service provider’s profit margin. The focus of
this paper is on optimizing UOC, that is, reducing the resource
requirement and waste for completing a user query while guaran-
teeing its performance SLA. This is primarily orthogonal to the
multi-tenancy techniques for POC optimization, and providers are
willing to spend effort reducing UOC to stay cost-competitive in the
market. Techniques for improving the efficiency of multi-tenancy
in a data center [30] is beyond the scope of this paper.

The idea of treating monetary cost as a database optimization
target dates back to the early days of cloud computing [14]. There
is a rich literature on optimizing the resource allocation in big data
systems with massive parallelism [13, 20, 24, 35, 38, 46]. Recent
studies on cost-efficient cloud data warehouses concentrate mainly
on cloud configurations. For example, Leis and Kuschewski pro-
posed a model-based algorithm to select a cost-optimal instance
configuration to run a workload [23]. Tan et al. examined major
cloud OLAP engines and revealed the performance-cost trade-offs
in the cloud storage hierarchy (e.g., AWS S3 vs. EBS) [39]. Star-
ling [34] and Lambada [29] used cloud functions to execute queries
to save cost by avoiding resource over-provisioning. These solu-
tions, however, are ad-hoc, and they target only a single aspect
of achieving cost efficiency in a cloud analytics system. There is
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a need for a holistic design of the core database architecture that
treats performance and cost with equal importance and allows a
native bi-objective optimization. The reality is that cost control
is still difficult in state-of-the-art systems, and the burden of cost
management is mostly left to the users [35, 36].

In this paper, we envision the architecture of a cloud data ware-
house designed for cost intelligence. We begin by discussing the
cost-control challenges in today’s cloud data warehouses. We then
present the concept of cost intelligence and describe our architec-
tural design for solving the critical problems in automatic resource
deployment in the foreground and automatic database tuning in
the background. The paper serves as both a system blueprint and
a research roadmap that identifies the missing/suboptimal compo-
nents and algorithms for achieving cost intelligence in the next-
generation cloud data warehouse.

2 THE CASE FOR COST INTELLIGENCE
Despite the “pay-as-you-go” model in the public cloud, it is still
difficult for an average database user to leverage resource elasticity
to control and optimize their bills when using a cloud database ser-
vice. In this section, we identify the cost-optimization challenges
in existing systems for both online resource provisioning and of-
fline database tuning. These challenges make the case for a cost-
intelligent database design that frees the users from the burden of
pursuing cost efficiency manually and ad hoc.

The first key challenge is automatic resource deployment
during query execution. Figure 1 shows a partial user interface
(UI) for creating a virtual warehouse (i.e., a stateless cluster for
query processing) in Snowflake [10]. Before submitting any queries,
a user must determine the cluster size by choosing a predefined
“T-shirt” size, where a larger size means more computing nodes and
a more expensive unit price. This basic service model for resource
allocation is common in today’s cloud data warehouses. For exam-
ple, the capacity-based pricing model in Google’s BigQuery [1, 2]
follows a similar pattern where users pay for the “compute slots”
they reserved to get predictable query performance1. However,

1The on-demand pricing in BigQuery charges users for the data scanned by their
queries. Under this pricing model, BigQuery optimizes the utilization of its entire
cluster (i.e., the POC) while sacrificing performance guarantees for individual queries.
Improving multi-tenancy in such a query service is beyond the scope of this paper.

this “one-shot” user-provisioning model often leads to inefficient
resource utilization.

First, average database users lack the expertise to accurately esti-
mate the resources necessary for their workloads. As a result, they
often over-provision the cluster size to guarantee that their perfor-
mance SLAs are met. Second, the cluster size is predetermined and
fixed2 for the entire workload, regardless of the query complexity
and data volume changes during the execution. Such inflexibility
prevents each pipeline within an analytical query from reaching
its cost-optimal degree of parallelism (DOP).

Determining the cost-optimal DOP for each pipeline in a dis-
tributed query plan is a pivotal step toward automatic resource
deployment. An interesting logic enabled by the resource elastic-
ity in the cloud is that for a task that is embarrassingly parallel,
executing the task using 1 machine for 100 minutes incurs the
same dollar cost as executing the task using 100 machines for 1
minute, but the second configuration has a 100x performance ad-
vantage. However, allocating more machines does not always bring
performance boosts for free because most database operators do
not exhibit perfectly-linear scalability. Many of them (e.g., hash
partitioning) require exchanging data between the machines where
the network could become the system’s bottleneck. Unlike in a
map-reduce-based big data system [35, 44], over-scaling the cluster
size in a distributed database not only wastes resources but also
could harm query latency. A user may end up paying more for the
same or even worse query performance.

To demonstrate that the goal of improving performance is not
aligned with that of reducing costs for common analytical queries,
we executed TPC-H [5] with a scale factor of 100 on Prestissimo (i.e.,
Presto [37] using the Velox execution engine [33]) with a different
cluster size varying from 1 to 20. Each (virtual) machine is an AWS
r6i.xlarge instance equippedwith 4 vCPUs of Intel®Xeon®Platinum
8375C CPU @ 2.90 GHz, 32 GB DRAM, and a network bandwidth
≈10 Gbps. Prestissimo executes each query pipeline on every ma-
chine in the cluster via data parallelism (i.e., input data are divided
into small “splits”). We measure the cumulative worker/machine
time to approximate the $ cost for each query under each cluster
size. We also report each query’s cumulative CPU time to indicate
its optimization upper bound through multi-tenancy.

Figure 3 plots the trade-off between query latency and cost for
a representative set of queries (TPC-H Query 1, 2, 9, and 11). We
observe L-shaped curves for query latency vs. worker time. When
the number of workers is small, performance scales almost linearly
with a modest extra worker-time cost. When the cluster grows
to a certain size (e.g., 8), however, adding more workers yields
diminishing returns in query performance, making the cumulative
worker time increase rapidly. A query’s DOP “sweet spot” is when
it has not yet hit a system bottleneck (e.g., network, I/O), and its
sequential portion of execution is still small enough in Amdahl’s
Law. We observe clear knees in the latency vs. worker time curves
for most TPC-H queries.

The second cost-optimization challenge is automatic database
tuning in the background. The goal is to allow databases to apply
tuning actions (e.g., building indexes and materialized views) wisely
and automatically to cut the expenses on database administrators

2although some services support auto-scaling to handle workload bursts [1, 7].
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Figure 3: Latency vs. Cumulative Worker Time / CPU Time for Executing Representative TPC-H Queries on Prestissimo. – Each
dot represents a different cluster size between 1 and 20. The darker the color, the larger the cluster size.

(DBAs). After decades of research and practice, from the AutoAdmin
project [8] to the recent self-driving databases [27, 32], there are
sophisticated algorithms and tools that can propose tuning actions
beneficial to the overall system performance.

These auto-tuning tools, however, are not designed to be cost-
aware in the cloud environment, and they do not provide a customer-
understandable measure that can indicate the net gain (or loss) of a
particular tuning action clearly. For example, suppose that a user
is presented with a tuning suggestion that proposes to recluster
(or repartition) a petabyte-sized table T according to a different
attribute A. Although such a reclustering operation could speed
up queries that use A in the predicates or join columns, the cost of
repopulating a petabyte-sized table is enormous. Without a metric
to evaluate the pros and cons of a tuning action uniformly, users
would hesitate to take such suggestions. Consequently, they still
have to rely on DBAs’ experience to make informed decisions.

Because of both the online and offline cost-optimization chal-
lenges, users today typically struggle to control their cloud bills
when using a data warehouse service. We, therefore, envision the
next-generation cloud-native system to be cost-intelligent. The
concept of cost intelligence is defined as the system’s ability to
self-adapt to stay Pareto-optimal in the performance-cost trade-off
under different workloads and user constraints. As shown in Fig-
ure 2, a cost-intelligent data warehouse would (re)configure itself
automatically (e.g., through automatic cluster resizing and offline
tuning) to move toward Pareto efficiency so that users can easily
make performance and cost trade-offs based on their application
needs by sliding along the Pareto frontier without worrying about
wasting resources.

To run a workload in a cost-intelligent data warehouse, users
only need to specify their constraints/preferences on performance
and cloud budget (instead of a list of “T-shirt” sizes), and the data-
base would figure out how to deliver the query results on time with
minimal dollar costs. Additionally, each database tuning proposal
is associated with a report that uses the dollar benefit/cost as the

bridge to evaluate the trade-offs so that users can decide whether
to apply this tuning action without the need for expertise from
professional DBAs.

We next sketch our solutions to the problems of automatic re-
source deployment (Section 3) and cost-oriented auto-tuning (Sec-
tion 4). We will present the architecture of a cost-intelligent cloud
data warehouse with an emphasis on the components and algo-
rithms that are missing in today’s systems.

3 AUTOMATIC RESOURCE DEPLOYMENT
In this section, we investigate the following problem: given an ana-
lytical query, how many compute nodes should the cloud database
allocate to achieve minimal cost while satisfying the performance
SLA (or to achieve optimal performance within the cost budget).
We assume that the nodes are symmetric. Selecting the optimal
hardware configuration for a query is beyond the scope of this
paper, and we refer the readers to [23].

We adopt a basic system architecture similar to Snowflake with
disaggregated computing and storage [10]. As shown in Figure 4,
the bottom storage layer, hosted by cloud objects storage services
such as AWS S3 and Azure Blob Storage, keeps the user data in
hybrid-columnar formats such as Parquet and ORC. On top of that,
the elastic compute layer allows users to acquire virtual machines
on demand to execute database queries. These nodes only provide
computing power, and they do not hold any persistent states. Such
a disaggregated architecture enables the computation and storage
resources to scale independently. At the top, the multi-tenant query
optimization service parses SQL queries and generates distributed
execution plans for the compute nodes to work on. There is also a
metadata service that provides low-latency access to the system’s
catalog and table statistics necessary for query planning. In the
rest of the paper, we assume private computations, i.e., the (virtual)
compute nodes are not shared among users. We also assume that
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Figure 4: System Architecture of a Cost-Intelligent Cloud Data Warehouse

the database service provider maintains a warm server pool to
facilitate rapid cluster creation, resizing, and reclamation3.

As discussed in Section 2, the diversity of database operators
leads to a different cost-optimal degree of parallelism for each
pipeline within a complex query. For example, scaling out a large
table scan incurs less performance overhead compared to scaling
out a distributed hash join. There are two types of methods to ap-
proach optimal DOP assignments. The first is to determine the DOP
of each pipeline at query optimization (i.e., static planning). How-
ever, no matter how sophisticated the models and algorithms are,
these static assignments could be far from optimal if the cardinality
estimation is way off. On the other hand, the system can adopt a
purely dynamic approach where each pipeline starts with a default
number of nodes (e.g., one) and then gradually adjusts the DOP
based on real-time feedback on the performance and resource uti-
lization. This approach, however, often leads to noticeable system
overhead caused by excessive cluster resizing operations.

We, therefore, propose a hybrid solution (shown in Figure 4). The
initial DOP for each pipeline (i.e., execution stage) is determined at
query optimization time through static planning that obeys user
constraints on performance and budget. This requires a relatively
accurate time and cost estimation at a fine granularity (Section 3.1)
and an optimizer that considers both query latency and monetary
cost as it enumerates the plan space (Section 3.2). Additionally, the
system monitors the execution progress along with the resource
utilization and adjusts the DOP assignments at run time (Section 3.3)
to ensure that the performance SLA is met with minimal cost (or
to obtain maximized performance within the budget).

3.1 Cost Estimation
The ability to predict the cost of a plan fragment accurately is in-
dispensable to a cost-intelligent system. The cost estimator is at
the center of our proposed architecture, where it functions as a
referee that ranks different execution proposals (including back-
ground tuning tasks) to guide the system to overall cost efficiency.

3Estimating the warm-pool size at the service level is beyond the scope of this paper.

Here, cost refers to both time and monetary costs. The input to
the cost estimator includes both logical information such as the
plan shape and the input/output cardinality for each operator as
well as physical parameters such as DOP assignments and other
hardware characteristics (e.g., memory size). The cost estimator
then outputs the predicted time and monetary cost of executing this
plan fragment with the specified hardware configuration. Because
we assume private computation in the system, the monetary cost
of a workload is proportional to the total machine time instead of
the CPU time. For example, if a pipeline execution is blocked on
a node waiting for the input data, the user is still charged for the
under-utilized resources.

There are several desired properties of the cost estimator. First,
the accuracy of the predictions determines the cost optimality of
the selected distributed execution plan. A misleading cost estima-
tion may cause serious under/over-provisioning of the compute
nodes and sub-optimal query plans (discussed in Section 3.2). Sec-
ond, the cost estimator must be lightweight. As the focal point of
the architecture, the cost estimator is frequently invoked by the
foreground query optimizer and the background tuning modules,
and its complexity affects the overall system efficiency. Third, the
models used in the cost estimator should be explainable. Because
estimation errors are inevitable (due to cardinality misestimation),
the system would occasionally make bad decisions that lead to slow
and expensive execution of customer queries. The explainability of
the cost estimator allows database engineers to reason about the
root causes and propose fixes tomake themodule more robust along
the way. When designing the algorithms in the cost estimator, we
are willing to trade some prediction accuracy for better efficiency
and explainability of the module because most sub-optimal DOP
assignments caused by the estimation errors can be recovered by
the “DOP monitor” at run time with a moderate system overhead.

There is a rich literature on query performance prediction. Al-
though the algorithms proposed in prior work are inspiring, they
are insufficient for solving our cost estimation problem. First, most
prior models only predict job/workload-level performance through
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learning the high-level job execution patterns [13, 35, 44]. They,
however, are ignorant of the pipeline formation inside a complex
query and are thus unable to provide more fine-grained cost estima-
tions. Second, these models target big data systems with a simpler
map-reduce execution model. Compared to executing analytical
queries in a relational database, map-reduce jobs do not involve
direct data transfer between execution nodes, and they do not have
pipelines running in parallel within a job.

Many previous solutions rely heavily on machine learning [6,
12, 15, 28, 35, 40]. There are several issues with this approach. First,
they typically assume a recurrent workload (common in big data
systems) and train their models offline using features extracted
from the execution history [13, 35, 38]. These models, however,
may not be generalized enough to provide accurate performance
predictions for ad-hoc queries issued by data scientists in a data
warehouse. To obtain a robust performance prediction for an ar-
bitrary query, many performance prediction algorithms choose to
profile the query on small data samples to collect training data
for their ML models [19, 36, 44]. Although the overhead of the
training process can be bounded [44], it is unlikely that such a
sampling-based estimation is lightweight enough to be invoked
frequently during query planning and execution to adjust the DOP
assignments. Furthermore, ML-based performance predictors often
feed high-level query features extracted from the SQL text (e.g.,
word frequencies) and physical plan (e.g., number of operators) into
models such as XGBoost and SVM [6, 12, 15, 40]. These models
treat the query internals as a black box and thus compromise the
prediction explainability, a property desired in our architecture.

Designing a cost estimator that is accurate, lightweight, and
explainable is a challenging research problem. In the rest of this
section, we sketch a possible solution that we are actively investi-
gating. Our cost estimator contains a set of per-operator models
and a query-level simulator. For each physical operator, we design
a scalability model that outputs its processing throughput given
the data size and the degree of parallelism. The model also refers to
the relevant hardware parameters that are calibrated before the ser-
vice starts. We found that simple mathematical formulas are good
enough to model the scalability of most physical operators (e.g.,
scan, filter). To improve the prediction accuracy for more complex
operators (typically involving data exchange between nodes), we
pre-train regression models for them with synthetic workloads that
cover the parameter space. As discussed before, we try to avoid
using complex ML models (e.g., deep neural networks) that trade
explainability for further accuracy.

Based on the per-operator scalability models, we can compute
the throughput of an operator pipeline given a DOP assignment
and thus estimate its execution time and total machine time (∝ cost).
The query simulator then models the data flow in each pipeline of
a query plan. In a multi-pipeline query, pipelines could be executed
in parallel, and a downstream pipeline could be blocked if the data
from one of its parents is not ready. The query optimizer, therefore,
would invoke the simulator multiple times to find a cost-optimal
pipeline-level DOP assignments (e.g., the accumulated “blocked”
time of the pipelines is minimized).

3.2 Bi-Objective Query Optimization
Query optimization in a cost-intelligent cloud data warehouse must
be bi-objective. The optimizer receives user constraints (or prefer-
ences) on query latency and cloud budget and produces distributed
query plans that are most efficient while satisfying these require-
ments. The bi-objective optimizer invokes the cost estimator dis-
cussed in the previous subsection to be cost-aware when searching
the plan space. The key challenge in designing a bi-objective opti-
mizer is to keep its computational complexity low.

Previous studies proposed theoretical frameworks for solving the
multi-objective optimization problem in databases [42, 43]. These
solutions target producing a set of physical plans that form the
Pareto frontier of the trade-offs of the multiple objectives. However,
generating a series of optimal plans with different trade-offs in-
evitably adds significant computational complexity to the search al-
gorithm.We argue that it may not be necessary for a cost-intelligent
database to present the full spectrum of plans with different esti-
mated times and costs for users to choose from. We observe that it
is more friendly to users to directly specify their latency or budget
constraints for a query. Therefore, we can “downgrade” the bi-
objective optimization problem into a constrained single-objective
optimization problem (i.e., find a plan with a minimal monetary
cost that satisfies a latency requirement, or find a plan with minimal
query latency within a cloud budget) to achieve a search complexity
similar to a traditional cost-based optimizer.

A second source of complexity unique to our optimizer is the fine-
grained DOP planning. Ideally, DOP planning should be integrated
into the unified cost-based search (e.g., the Cascade framework [16])
to obtain an optimal distributed plan [45]. However, enumerating
the DOP for each pipeline while exploring the physical plan shape
makes the search space explode. Instead, we separate the DOP plan-
ning from the DAG planning (i.e., the traditional single-machine
query optimization that produces an execution DAG) into a sub-
sequent optimization stage. Specifically, searching for an optimal
DOP assignment only applies to the “chosen” plan produced by the
DAG-planning stage. Although the separation of the stages misses
the opportunities to reach a globally optimized plan obtainable
from a unified search, it keeps the search complexity comparable
to existing optimizers.

Because a pipeline cannot start until all of its dependent pipelines
are complete, a heuristic that we use to speed up DOP planning by
pruning the search space is to make sure that these (concurrent)
dependent pipelines finish roughly at the same time to minimize
resource waste due to pipeline waiting. Specifically, if two depen-
dent pipelines started at the time have input cardinalities 𝐶1 and
𝐶2, and the throughput functions given by the cost estimator are
𝑇1 (·) and 𝑇2 (·), we ensure that the DOP assignments of the two
pipelines satisfy 𝐶1

𝑇1 (𝐷𝑂𝑃1 ) ≈ 𝐶2
𝑇2 (𝐷𝑂𝑃2 ) .

A bi-objective query optimizer in a cloud system should lever-
age resource elasticity to make judicious trade-offs between query
latency and monetary cost. Optimizing bushy joins is one of the
interesting problems in this area. In a distributed environment with
elastic resources, a “bushier” plan enables more concurrency in
pipeline executions and is more likely to scale to a larger cluster
to achieve a lower query latency. However, a bushier plan may
not be optimal in terms of join cardinalities, and it may, therefore,
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cost more computations (and total machine time). Bushy joins are
usually ignored in traditional optimizers for a single machine (i.e.,
the DAG planning stage in our optimizer) to reduce the search
space. We propose to explore bushy plans in the DOP planning
stage. After receiving a left-deep plan from DAG planning, we
would reorganize the join shape to make a series of plan variants
that are increasingly bushier. The relations are chosen carefully in
the above plan rewrite so that the join cardinalities are bounded
(e.g., non-expanding joins) [9, 47]. We then apply DOP planning to
each of the plan variants and choose the one that makes the best
time-cost trade-offs under user constraints.

3.3 Dynamic Cluster Resizing
A static DOP assignment produced in query optimization could suf-
fer from errors in cardinality estimations. We, therefore, introduce
a DOP monitor that dynamically adjusts the cluster size at run time
to meet user requirements. Prior auto-scaling strategies typically
fall into two categories. The first is to assess the execution progress
after each fixed time interval and scale the cluster if necessary to
meet a performance SLA [13, 18, 41]. This approach works well
for massively parallelizable jobs (e.g., map-reduce). For complex
analytical queries, however, scaling out the entire cluster may not
be cost-efficient. For example, if the execution is bottlenecked by
a particular pipeline, scaling out the concurrent (or downstream)
pipelines proportionally could hurt their resource utilization.

Therefore, we apply auto-scaling at the pipeline granularity. The
DOP monitor collects the true cardinalities, the pipeline flow rates,
and the resource utilization at run time. If the measures of a pipeline
deviate from the statically-planned values within a threshold, we
correct the deviation by adjusting the DOP of this pipeline only
(according to the scalability models in the cost estimator). If the
deviation is substantial, we will reinvoke the DOP planner with
the collected run-time statistics to generate a new set of DOP as-
signments for all the pipelines to ensure that user constraints are
satisfied efficiently.

The second category of auto-scaling strategies is to determine
the resources for the next execution stage after each data shuffle [1,
38, 46]. For example, BigQuery would shrink the cluster size for the
next stage if its shuffle service detects severe overestimation of the
output cardinality of the previous stage [11]. This approach relies
on materializing the intermediate results at the pipeline breakers
on persistent storage or in a data shuffle service. Such “clean cuts”
between execution stages impose performance overhead, and we
believe that they are nonessential to achieving fine-grained auto-
scaling. Our DOP monitor can not only re-plan the DOPs for future
stages but also adjust the cluster size of the current stage with
minimal resizing overhead. This is enabled by the morsel-driven
scheduling [22] in our execution engine, where the smaller tasks
make real-time cluster resizing more efficient. We also adopt a push-
based execution model [3] so that we have centralized control over
the data flow to allow DOP changes promptly.

4 COST-ORIENTED AUTO-TUNING
As discussed in Section 2, a key step toward automating the database
tuning process in the cloud is to use themonetary cost as a common
metric to evaluate different aspects of a tuning action systematically.

Physical database tuning is a difficult problem in traditional DBMSs
with fixed resources. It relies heavily on DBAs’ experience because
the resource contentions are hard to quantify. For example, creating
a materialized view (MV) for an intermediate join result would
speed up a group of queries and thus improve the read throughput
of the system. However, maintaining the freshness of the MVwould
slow down writes to the database. And because of fixed resources,
spending extra computation on MV updates also hurts the system’s
read-throughput. This implicit resource contention between the
read and write operations complicates the tuning process.

We argue that the auto-tuning problem is more solvable in a
cloud environment. The key idea is to leverage the elastic resources
to guarantee the same or better performance after applying a tuning
action and then evaluatewhether this action reduces the operational
cost of the system in the long run. Consider the same MV-creation
example above, we would allocate separate compute resources for
MV maintenance to avoid resource contention so that it does not
hurt the performance of normal read and write operations. Then,
we estimate that the computation saved by substituting the MV
into queries is worth 𝑥 dollars per time unit, and the extra cost of
storing and updating the MV is 𝑦 dollars per time unit. If 𝑥 −𝑦 > 0,
this tuning action is likely to be beneficial. Using the dollar as
a common metric simplifies the auto-tuning logic and makes it
possible to present the trade-offs of a tuning action to average
customers clearly.

To estimate the above dollar benefits/costs for a tuning action,
the systemmust be able to predict futureworkloads besides accurate
cost estimation described in Section 3.1. Recent work has focused
on using various machine-learning algorithms for the task [17, 26].
Although these algorithms matter, we believe that a comprehensive
and efficient Statistics Service (as shown in Figure 4) is the founda-
tion of accurate workload predictions. For each database instance,
the Statistics Service collects the query execution logs and metrics
from all the tenants to form the “ground truth” for understanding
workload behaviors. The service computes in the background with
these collected traces to generate and maintain queryable work-
load summaries, including file/attribute-access counts and weighted
join graphs4 for training workload-prediction models and run-time
resource usage for modeling the performance and monetary cost.

We identify several challenges in building an efficient Statistics
Service. First, the database must implement its own lightweight
profiling tool that can attribute the run-time resource measures
to logical database tasks easily. Most off-the-shelf profiling tools,
such as Linux Perf, incur prohibitively high system overhead when
accompanying normal query execution, and they are only good
at capturing snapshots of entire processes. Second, although we
assume private computing from a user’s perspective, it is multi-
tenant underneath for the service provider. The ability to attribute
the shared hardware usage to each of the concurrent workloads are
critical to the Statistics Service.

Finally, the Statistics Service itself must be cost-efficient as well.
This requires new algorithms to balance the generation cost and the
comprehensiveness of different types of statistics (e.g., by varying
sampling rates). Statistics feeding back to online execution are

4A graph where the vertices are table attributes and the weights on the edges indicate
how often the attributes are joined.
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forwarded to the Metadata Service for low-latency access, while
those mainly for auto-tuning are aggregated periodically to model
future workloads. We can treat each major statistics refresh as a
background tuning action and use the above cost-oriented tuning
logic to determine the refresh frequency. However, the indirect
benefit of refreshing statistics is difficult to estimate. It might be
more practical to use the distance between the estimated and the
actual benefits of recently-applied tuning actions as an indicator
to trigger a statistics refresh. The service could also identify the
hot and cold statistics and design different data structures on tiered
storage to trade between querying performance and storage cost.

To complete the auto-tuning cycle, our system includes aWhat-if
Service that evaluates tuning proposals from existing auto-tuning
tools [8, 26]. For each tuning proposal, the What-if Service gener-
ates a relevant workload prediction based on the Statistics Service.
Then it invokes the cost estimator to determine whether the tuning
action is “profitable” using the logic described at the beginning of
this section. Once the What-if Service accepts a tuning proposal
(the process could involve user approval), the job is sent to the
background compute for execution.

5 CONCLUSION
We introduced the concept of cost intelligence, a much-desired prop-
erty for next-generation cloud data warehouses. The architecture
proposed in the paper allows both automatic resource deployment
and cost-oriented auto-tuning. We are actively building the system
at Tsinghua University, and we hope that our work will inspire
researchers in this community to tackle the challenges presented
in the paper together.
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